我最喜欢的对资源的定义是:"任何在你的程序中获得并在此后释放的东西。"内存是一个相当明显的资源的例子。它需要用new来获得,用delete来释放。同时也有许多其它类型的资源文件句柄、重要的片断、Windows中的GDI资源,等等。将资源的概念推广到程序中创建、释放的所有对象也是十分方便的,无论对象是在堆中分配的还是在栈中或者是在全局作用于内生命的。
我最喜欢的对资源的定义是:"任何在你的程序中获得并在此后释放的东西。"内存是一个相当明显的资源的例子。它需要用new来获得,用delete来释放。同时也有许多其它类型的资源文件句柄、重要的片断、Windows中的GDI资源,等等。将资源的概念推广到程序中创建、释放的所有对象也是十分方便的,无论对象是在堆中分配的还是在栈中或者是在全局作用于内生命的。
资源及它们的所有权
我最喜欢的对资源的定义是:"任何在你的程序中获得并在此后释放的东西?quot;内存是一个相当明显的资源的例子。它需要用new来获得,用delete来释放。同时也有许多其它类型的资源文件句柄、重要的片断、Windows中的GDI资源,等等。将资源的概念推广到程序中创建、释放的所有对象也是十分方便的,无论对象是在堆中分配的还是在栈中或者是在全局作用于内生命的。
对于给定的资源的拥有着,是负责释放资源的一个对象或者是一段代码。所有权分立为两种级别--自动的和显式的(automatic and explicit),如果一个对象的释放是由语言本身的机制来保证的,这个对象的就是被自动地所有。例如,一个嵌入在其他对象中的对象,他的清除需要其他对象来在清除的时候保证。外面的对象被看作嵌入类的所有者。 类似地,每个在栈上创建的对象(作为自动变量)的释放(破坏)是在控制流离开了对象被定义的作用域的时候保证的。这种情况下,作用于被看作是对象的所有者。注意所有的自动所有权都是和语言的其他机制相容的,包括异常。无论是如何退出作用域的--正常流程控制退出、一个break语句、一个return、一个goto、或者是一个throw--自动资源都可以被清除。
到目前为止,一切都很好!问题是在引入指针、句柄和抽象的时候产生的。如果通过一个指针访问一个对象的话,比如对象在堆中分配,C++不自动地关注它的释放。程序员必须明确的用适当的程序方法来释放这些资源。比如说,如果一个对象是通过调用new来创建的,它需要用delete来回收。一个文件是用CreateFile(Win32 API)打开的,它需要用CloseHandle来关闭。用EnterCritialSection进入的临界区(Critical Section)需要LeaveCriticalSection退出,等等。一个"裸"指针,文件句柄,或者临界区状态没有所有者来确保它们的最终释放。基本的资源管理的前提就是确保每个资源都有他们的所有者。
第一规则
一个指针,一个句柄,一个临界区状态只有在我们将它们封装入对象的时候才会拥有所有者。这就是我们的第一规则:在构造函数中分配资源,在析构函数中释放资源。
当你按照规则将所有资源封装的时候,你可以保证你的程序中没有任何的资源泄露。这点在当封装对象(Encapsulating Object)在栈中建立或者嵌入在其他的对象中的时候非常明显。但是对那些动态申请的对象呢?不要急!任何动态申请的东西都被看作一种资源,并且要按照上面提到的方法进行封装。这一对象封装对象的链不得不在某个地方终止。它最终终止在最高级的所有者,自动的或者是静态的。这些分别是对离开作用域或者程序时释放资源的保证。
下面是资源封装的一个经典例子。在一个多线程的应用程序中,线程之间共享对象的问题是通过用这样一个对象联系临界区来解决的。每一个需要访问共享资源的客户需要获得临界区。例如,这可能是Win32下临界区的实现方法。
class CritSect
{
friend class Lock;
public:
CritSect () { InitializeCriticalSection (&_critSection); }
~CritSect () { DeleteCriticalSection (&_critSection); }
private
void Acquire ()
{
EnterCriticalSection (&_critSection);
}
void Release ()
{
LeaveCriticalSection (&_critSection);
}
CRITICAL_SECTION _critSection;
};
这里聪明的部分是我们确保每一个进入临界区的客户最后都可以离开。"进入"临界区的状态是一种资源,并应当被封装。封装器通常被称作一个锁(lock)。
class Lock
{
public:
Lock (CritSect& critSect) : _critSect (critSect)
{
_critSect.Acquire ();
}
~Lock ()
{
_critSect.Release ();
}
private
CritSect & _critSect;
};
锁一般的用法如下:
void Shared::Act () throw (char *)
{
Lock lock (_critSect);
// perform action -- may throw
// automatic destructor of lock
}
注意无论发生什么,临界区都会借助于语言的机制保证释放。
还有一件需要记住的事情--每一种资源都需要被分别封装。这是因为资源分配是一个非常容易出错的操作,是要资源是有限提供的。我们会假设一个失败的资源分配会导致一个异常--事实上,这会经常的发生。所以如果你想试图用一个石头打两只鸟的话,或者在一个构造函数中申请两种形式的资源,你可能就会陷入麻烦。只要想想在一种资源分配成功但另一种失败抛出异常时会发生什么。因为构造函数还没有全部完成,析构函数不可能被调用,第一种资源就会发生泄露。
这种情况可以非常简单的避免。无论何时你有一个需要两种以上资源的类时,写两个笑的封装器将它们嵌入你的类中。每一个嵌入的构造都可以保证删除,即使包装类没有构造完成。
Smart Pointers
我们至今还没有讨论最常见类型的资源--用操作符new分配,此后用指针访问的一个对象。我们需要为每个对象分别定义一个封装类吗?(事实上,C++标准模板库已经有了一个模板类,叫做auto_ptr,其作用就是提供这种封装。我们一会儿在回到auto_ptr。)让我们从一个极其简单、呆板但安全的东西开始。看下面的Smart Pointer模板类,它十分坚固,甚至无法实现。
template <class T>
class SPtr
{
public:
~SPtr () { delete _p; }
T * operator->() { return _p; }
T const * operator->() const { return _p; }
protected:
SPtr (): _p (0) {}
explicit SPtr (T* p): _p (p) {}
T * _p;
};
为什么要把SPtr的构造函数设计为protected呢?如果我需要遵守第一条规则,那么我就必须这样做。资源--在这里是class T的一个对象--必须在封装器的构造函数中分配。但是我不能只简单的调用new T,因为我不知道T的构造函数的参数。因为,在原则上,每一个T都有一个不同的构造函数;我需要为他定义个另外一个封装器。模板的用处会很大,为每一个新的类,我可以通过继承SPtr定义一个新的封装器,并且提供一个特定的构造函数。
class SItem: public SPtr<Item>
{
public:
explicit SItem (int i)
: SPtr<Item> (new Item (i)) {}
};
为每一个类提供一个Smart Pointer真的值得吗?说实话--不!他很有教学的价值,但是一旦你学会如何遵循第一规则的话,你就可以放松规则并使用一些高级的技术。这一技术是让SPtr的构造函数成为public,但是只是是用它来做资源转换(Resource Transfer)我的意思是用new操作符的结果直接作为SPtr的构造函数的参数,像这样:
SPtr<Item> item (new Item (i));
这个方法明显更需要自控性,不只是你,而且包括你的程序小组的每个成员。他们都必须发誓出了作资源转换外不把构造函数用在人以其他用途。幸运的是,这条规矩很容易得以加强。只需要在源文件中查找所有的new即可。
Resource Transfer
到目前为止,我们所讨论的一直是生命周期在一个单独的作用域内的资源。现在我们要解决一个困难的问题--如何在不同的作用域间安全的传递资源。这一问题在当你处理容器的时候会变得十分明显。你可以动态的创建一串对象,将它们存放至一个容器中,然后将它们取出,并且在最终安排它们。为了能够让这安全的工作--没有泄露--对象需要改变其所有者。
这个问题的一个非常显而易见的解决方法是使用Smart Pointer,无论是在加入容器前还是还找到它们以后。这是他如何运作的,你加入Release方法到Smart Pointer中:
template <class T>
T * SPtr<T>::Release ()
{
T * pTmp = _p;
_p = 0;
return pTmp;
}
注意在Release调用以后,Smart Pointer就不再是对象的所有者了--它内部的指针指向空。现在,调用了Release都必须是一个负责的人并且迅速隐藏返回的指针到新的所有者对象中。在我们的例子中,容器调用了Release,比如这个Stack的例子:
void Stack::Push (SPtr <Item> & item) throw (char *)
{
if (_top == maxStack)
throw "Stack overflow";
_arr [_top++] = item.Release ();
};
同样的,你也可以再你的代码中用加强Release的可靠性。
相应的Pop方法要做些什么呢?他应该释放了资源并祈祷调用它的是一个负责的人而且立即作一个资源传递它到一个Smart Pointer?这听起来并不好。
Strong Pointers
资源管理在内容索引(Windows NT Server上的一部分,现在是Windows 2000)上工作,并且,我对这十分满意。然后我开始想……这一方法是在这样一个完整的系统中形成的,如果可以把它内建入语言的本身岂不是一件非常好?我提出了强指针(Strong Pointer)和弱指针(Weak Pointer)。一个Strong Pointer会在许多地方和我们这个SPtr相似--它在超出它的作用域后会清除他所指向的对象。资源传递会以强指针赋值的形式进行。也可以有Weak Pointer存在,它们用来访问对象而不需要所有对象--比如可赋值的引用。
任何指针都必须声明为Strong或者Weak,并且语言应该来关注类型转换的规定。例如,你不可以将Weak Pointer传递到一个需要Strong Pointer的地方,但是相反却可以。Push方法可以接受一个Strong Pointer并且将它转移到Stack中的Strong Pointer的序列中。Pop方法将会返回一个Strong Pointer。把Strong Pointer的引入语言将会使垃圾回收成为历史。
这里还有一个小问题--修改C++标准几乎和竞选美国总统一样容易。当我将我的注意告诉给Bjarne Stroutrup的时候,他看我的眼神好像是我刚刚要向他借一千美元一样。
然后我突然想到一个念头。我可以自己实现Strong Pointers。毕竟,它们都很想Smart Pointers。给它们一个拷贝构造函数并重载赋值操作符并不是一个大问题。事实上,这正是标准库中的auto_ptr有的。重要的是对这些操作给出一个资源转移的语法,但是这也不是很难。
template <class T>
SPtr<T>::SPtr (SPtr<T> & ptr)
{
_p = ptr.Release ();
}
template <class T>
void SPtr<T>::operator = (SPtr<T> & ptr)
{
if (_p != ptr._p)
{
delete _p;
_p = ptr.Release ();
}
}