C++中的虚函数的作用主要是实现了多态的机制。关于多态,简而言之就是用父类型别的指针指向其子类的实例,然后通过父类的指针调用实际子类的成员函数。这种技术可以让父类的指针有“多种形态”,这是一种泛型技术。所谓泛型技术,说白了就是试图使用不变的代码来实现可变的算法。比如:模板技术,RTTI技术,虚函数技术,要么是试图做到在编译时决议,要么试图做到运行时决议。
关于虚函数的使用方法,我在这里不做过多的阐述。大家可以看看相关的C++的书籍。在这篇文章中,我只想从虚函数的实现机制上面为大家一个清晰的剖析。
当然,相同的文章在网上也出现过一些了,但我总感觉这些文章不是很容易阅读,大段大段的代码,没有图片,没有详细的说明,没有比较,没有举一返三。不利于学习和阅读,所以这是我想写下这篇文章的原因。也希望大家多给我提意见。
言归正传,让我们一起进入虚函数的世界。
虚函数表
对C++了解的人都应该知道虚函数(Virtual Function)是通过一张虚函数表(Virtual Table)来实现的。简称为V-Table.在这个表中,主是要一个类的虚函数的地址表,这张表解决了继承、重载的问题,保证其容真实反应实际的函数。这样,在有虚函数的类的实例中这个表被分配在了这个实例的内存中,所以,当我们用父类的指针来操作一个子类的时候,这张虚函数表就显得由为重要了,它就像一个地图一样,指明了实际所应该调用的函数。
这里我们着重看一下这张虚函数表。在C++的标准规格说明书中说到,编译器必需要保证虚函数表的指针存在于对象实例中最前面的位置(这是为了保证正确取到虚函数的偏移量)。 这意味着我们通过对象实例的地址得到这张虚函数表,然后就可以遍历其中函数指针,并调用相应的函数。
听我扯了那么多,我可以感觉出来你现在可能比以前更加晕头转向了。 没关系,下面就是实际的例子,相信聪明的你一看就明白了。
假设我们有这样的一个类:
class Base {public:virtual void f() { cout << "Base::f" << endl; }virtual void g() { cout << "Base::g" << endl; }virtual void h() { cout << "Base::h" << endl; } }; |
typedef void(*Fun)(void); Base b; Fun pFun = NULL; cout << "虚函数表地址:" << (int*)(&b) << endl; cout << "虚函数表 — 第一个函数地址:" << (int*)*(int*)(&b) << endl; // Invoke the first virtual function pFun = (Fun)*((int*)*(int*)(&b)); pFun(); |
虚函数表地址: 0012FED4虚函数表 — 第一个函数地址: 0044F148Base::f |
Fun)*((int*)*(int*)(&b)+0); // Base::f()(Fun)*((int*)*(int*)(&b)+1); // Base::g()(Fun)*((int*)*(int*)(&b)+2); // Base::h() |
这个时候你应该懂了吧!什么?还是有点晕。也是,这样的代码看着太乱了。没问题,让我画个图解释一下。如下所示:
图1 |
注意:在上面这个图中,我在虚函数表的最后多加了一个结点,这是虚函数表的结束结点,就像字符串的结束符“\0”一样,其标志了虚函数表的结束。这个结束标志的值在不同的编译器下是不同的。在WinXP+VS2003下,这个值是NULL.而在Ubuntu 7.10 + Linux 2.6.22 + GCC 4.1.3下,这个值是如果1,表示还有下一个虚函数表,如果值是0,表示是最后一个虚函数表。
下面,我将分别说明“无重载”和“有重载”时的虚函数表的样子。没有重载父类的虚函数是毫无意义的。我之所以要讲述没有重载的情况,主要目的是为了给一个对比。在比较之下,我们可以更加清楚地知道其内部的具体实现。