当前位置导航:炫浪网>>网络学院>>编程开发>>JAVA教程>>Java进阶

Java堆的管理--透视垃圾回收机制


  1 引言
  Java的堆是一个运行时数据区,类的实例(对象)从中分配空间。Java虚拟机(JVM)的堆中储存着正在运行的应用程序所建立的所有对象,这些对象通过new、newarray、anewarray和multianewarray等指令建立,但是它们不需要程序代码来显式地释放。一般来说,堆的是由垃圾回收 来负责的,尽管JVM规范并不要求特殊的垃圾回收技术,甚至根本就不需要垃圾回收,但是由于内存的有限性,JVM在实现的时候都有一个由垃圾回收所管理的堆。垃圾回收是一种动态存储管理技术,它自动地释放不再被程序引用的对象,按照特定的垃圾收集算法来实现资源自动回收的功能。
  
  2 垃圾收集的意义
  在C++中,对象所占的内存在程序结束运行之前一直被占用,在明确释放之前不能分配给其它对象;而在Java中,当没有对象引用指向原先分配给某个对象的内存时,该内存便成为垃圾。JVM的一个系统级线程会自动释放该内存块。垃圾收集意味着程序不再需要的对象是"无用信息",这些信息将被丢弃。当一个对象不再被引用的时候,内存回收它占领的空间,以便空间被后来的新对象使用。事实上,除了释放没用的对象,垃圾收集也可以清除内存记录碎片。由于创建对象和垃圾收集器释放丢弃对象所占的内存空间,内存会出现碎片。碎片是分配给对象的内存块之间的空闲内存洞。碎片整理将所占用的堆内存移到堆的一端,JVM将整理出的内存分配给新的对象。
  
  垃圾收集能自动释放内存空间,减轻编程的负担。这使Java 虚拟机具有一些优点。首先,它能使编程效率提高。在没有垃圾收集机制的时候,可能要花许多时间来解决一个难懂的存储器问题。在用Java语言编程的时候,靠垃圾收集机制可大大缩短时间。其次是它保护程序的完整性, 垃圾收集是Java语言安全性策略的一个重要部份。
  
  垃圾收集的一个潜在的缺点是它的开销影响程序性能。Java虚拟机必须追踪运行程序中有用的对象, 而且最终释放没用的对象。这一个过程需要花费处理器的时间。其次垃圾收集算法的不完备性,早先采用的某些垃圾收集算法就不能保证100%收集到所有的废弃内存。当然随着垃圾收集算法的不断改进以及软硬件运行效率的不断提升,这些问题都可以迎刃而解。
  
  3 垃圾收集的算法分析
  Java语言规范没有明确地说明JVM使用哪种垃圾回收算法,但是任何一种垃圾收集算法一般要做2件基本的事情:(1)发现无用信息对象;(2)回收被无用对象占用的内存空间,使该空间可被程序再次使用。
  
  大多数垃圾回收算法使用了根集(root set)这个概念;所谓根集就量正在执行的Java程序可以访问的引用变量的集合(包括局部变量、参数、类变量),程序可以使用引用变量访问对象的属性和调用对象的方法。垃圾收集首选需要确定从根开始哪些是可达的和哪些是不可达的,从根集可达的对象都是活动对象,它们不能作为垃圾被回收,这也包括从根集间接可达的对象。而根集通过任意路径不可达的对象符合垃圾收集的条件,应该被回收。下面介绍几个常用的算法。
  
  3.1 引用计数法(Reference Counting Collector)
  
  引用计数法是唯一没有使用根集的垃圾回收得法,该算法使用引用计数器来区分存活对象和不再使用的对象。一般来说,堆中的每个对象对应一个引用计数器。当每一次创建一个对象并赋给一个变量时,引用计数器置为1。当对象被赋给任意变量时,引用计数器每次加1。当对象出了作用域后(该对象丢弃不再使用),引用计数器减1,一旦引用计数器为0,对象就满足了垃圾收集的条件。
  
  基于引用计数器的垃圾收集器运行较快,不会长时间中断程序执行,适宜地必须 实时运行的程序。但引用计数器增加了程序执行的开销,因为每次对象赋给新的变量 ,计数器加1,而每次现有对象出了作用域生,计数器减1。
  
  3.2 tracing算法(Tracing Collector)
  
  tracing算法是为了解决引用计数法的问题而提出,它使用了根集的概念。基于tracing算法的垃圾收集器从根集开始扫描,识别出哪些对象可达,哪些对象不可达,并用某种方式标记可达对象,例如对每个可达对象设置一个或多个位。在扫描识别过程中,基于tracing算法的垃圾收集也称为标记和清除(mark-and-sweep)垃圾收集器.
  
  3.3 compacting算法(Compacting Collector)
  
  为了解决堆碎片问题,基于tracing的垃圾回收吸收了Compacting算法的思想,在清除的过程中,算法将所有的对象移到堆的一端,堆的另一端就变成了一个相邻的空闲内存区,收集器会对它移动的所有对象的所有引用进行更新,使得这些引用 在新的位置能识别原来 的对象。在基于Compacting算法的收集器的实现中,一般增加句柄和句柄表。
  
  3.4 coping算法(Coping Collector)
  
  该算法的提出是为了克服句柄的开销和解决堆碎片的垃圾回收。它开始时把堆分成 一个对象 面和多个空闲面, 程序从对象面为对象分配空间,当对象满了,基于coping算法的垃圾 收集就从根集中扫描活动对象,并将每个 活动对象复制到空闲面(使得活动对象所占的内存之间没有空闲洞),这样空闲面变成了对象面,原来的对象面变成了空闲面,程序会在新的对象面中分配内存。
  
  一种典型的基于coping算法的垃圾回收是stop-and-copy算法,它将堆分成对象面和空闲区域面,在对象面与空闲区域面的切换过程中,程序暂停执行。
  
  3.5 generation算法(Generational Collector)
  
  stop-and-copy垃圾收集器的一个缺陷是收集器必须复制所有的活动对象,这增加了程序等待时间,这是coping算法低效的原因。在程序设计中有这样的规律:多数对象存在的时间比较短,少数的存在时间比较长。因此,generation算法将堆分成两个或多个,每个子堆作为对象的一代(generation)。由于多数对象存在的时间比较短,随着程序丢弃不使用的对象,垃圾收集器将从最年轻的子堆中收集这些对象。在分代式的垃圾收集器运行后,上次运行存活下来的对象移到下一最高代的子堆中,由于老一代的子堆不会经常被回收,因而节省了时间。
  
  3.6 adaptive算法(Adaptive Collector)
  
  在特定的情况下,一些垃圾收集算法会优于其它算法。基于Adaptive算法的垃圾收集器就是监控当前堆的使用情况,并将选择适当算法的垃圾收集器。
  
  4 透视Java垃圾回收
  4.1 命令行参数透视垃圾收集器的运行
  
  使用System.gc()可以不管JVM使用的是哪一种垃圾回收的算法,都可以请求Java的垃圾回收。在命令行中有一个参数-verbosegc可以查看Java使用的堆内存的情况,它的格式如下:
  
  java -verbosegc classfile
  
  可以看个例子:
  
  class TestGC
  {
   public static void main(String[] args)
   {
   new TestGC();
   System.gc();
   System.runFinalization();
   }
  }
  
  在这个例子中,一个新的对象被创建,由于它没有使用,所以该对象迅速地变为可达,程序编译后,执行命令: java -verbosegc TestGC 后结果为:
  
  [Full GC 168K->97K(1984K), 0.0253873 secs]
  
  机器的环境为,Windows 2000 + JDK1.3.1,箭头前后的数据168K和97K分别表示垃圾收集GC前后所有存活对象使用的内存容量,说明有168K-97K=71K的对象容量被回收,括号内的数据1984K为堆内存的总容量,收集所需要的时间是0.0253873秒(这个时间在每次执行的时候会有所不同)。
  
  4.2 finalize方法透视垃圾收集器的运行
  
  在JVM垃圾收集器收集一个对象之前 ,一般要求程序调用适当的方法释放资源,但在没有明确释放资源的情况下,Java提供了缺省机制来终止化该对象心释放资源,这个方法就是finalize()。它的原型为:
  
  protected void finalize() throws Throwable
  
  在finalize()方法返回之后,对象消失,垃圾收集开始执行。原型中的throws Throwable表示它可以抛出任何类型的异常。
  
  之所以要使用finalize(),是由于有时需要采取与Java的普通方法不同的一种方法,通过分配内存来做一些具有C风格的事情。这主要可以通过"固有方法"来进行,它是从Java里调用非Java方法的一种方式。C和C++是目前唯一获得固有方法支持的语言。但由于它们能调用通过其他语言编写的子程序,所以能够有效地调用任何东西。在非Java代码内部,也许能调用C的malloc()系列函数,用它分配存储空间。而且除非调用了free(),否则存储空间不会得到释放,从而造成内存"漏洞"的出现。当然,free()是一个C和C++函数,所以我们需要在finalize()内部的一个固有方法中调用它。也就是说我们不能过多地使用finalize(),它并不是进行普通清除工作的理想场所。
  
  在普通的清除工作中,为清除一个对象,那个对象的用户必须在希望进行清除的地点调用一个清除方法。这与C++"破坏器"的概念稍有抵触。在C++中,所有对象都会破坏(清除)。或者换句话说,所有对象都"应该"破坏。若将C++对象创建成一个本地对象,比如在堆栈中创建(在Java中是不可能的),那么清除或破坏工作就会在"结束花括号"所代表的、创建这个对象的作用域的末尾进行。若对象是用new创建的(类似于Java),那么当程序员调用C++的delete命令时(Java没有这个命令),就会调用相应的破坏器。若程序员忘记了,那么永远不会调用破坏器,我们最终得到的将是一个内存"漏洞",另外还包括对象的其他部分永远不会得到清除。
  
  相反,Java不允许我们创建本地(局部)对象--无论如何都要使用new。但在Java中,没有"delete"命令来释放对象,因为垃圾收集器会帮助我们自动释放存储空间。所以如果站在比较简化的立场,我们可以说正是由于存在垃圾收集机制,所以Java
相关内容
赞助商链接