当前位置导航:炫浪网>>网络学院>>操作系统>>Linux教程

揭开Linux系统内核调试器的神秘面纱

KDB 入门指南

调试内核问题时,能够跟踪内核执行情况并查看其内存和数据结构是非常有用的。Linux 中的内置内 核调试器 KDB 提供了这种功能。在本文中您把了解怎么样使用 KDB 所提供的功能,以及怎么样在 Linux 机器上安装和设置 KDB。您还把熟悉 KDB 中可以使用的命令以及设置和显示选项。

Linux 内核调试器(KDB)允许您调试 Linux 内核。这个恰如其名的工具实质上是内核代码的补丁,它允许高手访问内核内存和数据结构。KDB 的主要优点之一就是它不需要用另一台机器进行调试:您可以调试正在运行的内核。

设置一台用于 KDB 的机器需要花费一些工作,因为需要给内核打补丁并进行重新编译。KDB 的用户应当熟悉 Linux 内核的编译(在一定程度上还要熟悉内核内部机理),但是如果您需要编译内核方面的帮助,请参阅本文结尾处的参考资料一节。

在本文中,我们把从有关下载 KDB 补丁、打补丁、(重新)编译内核以及启动 KDB 方面的信息着手。然后我们把了解 KDB 命令并研究一些较常用的命令。最后,我们把研究一下有关设置和显示选项方面的一些详细信息。

入门

KDB 项目是由 Silicon Graphics 维护的(请参阅参考资料以获取链接),您需要从它的 FTP 站点下载与内核版本有关的补丁。(在编写本文时)可用的最新 KDB 版本是 4.2。您把需要下载并应用两个补丁。

一个是“公共的”补丁,包含了对通用内核代码的更改,另一个是特定于体系结构的补丁。补丁可作为 bz2 文件获取。例如,在运行 2.4.20 内核的 x86 机器上,您会需要 kdb-v4.2-2.4.20-common-1.bz2 和 kdb-v4.2-2.4.20-i386-1.bz2。

这里所提供的所有示例都是针对 i386 体系结构和 2.4.20 内核的。您把需要根据您的机器和内核版本进行适当的更改。您还需要拥有 root 许可权以执行这些操作。

把文件复制到 /usr/src/linux 目录中并从用 bzip2 压缩的文件解压缩补丁文件:

#bzip2 -d kdb-v4.2-2.4.20-common-1.bz2

#bzip2 -d kdb-v4.2-2.4.20-i386-1.bz2

您把获得 kdb-v4.2-2.4.20-common-1 和 kdb-v4.2-2.4-i386-1 文件。

现在,应用这些补丁:

#patch -p1

#patch -p1

这些补丁应该干净利落地加以应用。查找任何以 .rej 结尾的文件。这个扩展名表明这些是失败的补丁。如果内核树没问题,那么补丁的应用就不会有任何问题。

接下来,需要构建内核以支持 KDB。第一步是设置 CONFIG_KDB 选项。使用您喜欢的配置机制(xconfig 和 menuconfig 等)来完成这一步。转到结尾处的“Kernel hacking”部分并选择“Built-in Kernel Debugger support”选项。

您还可以根据自己的偏好选择其它两个选项。选择“Compile the kernel with frame pointers”选项(如果有的话)则设置 CONFIG_FRAME_POINTER 标志。这把产生更好的堆栈回溯,因为帧指针寄存器被用作帧指针而不是通用寄存器。

您还可以选择“KDB off by default”选项。这把设置 CONFIG_KDB_OFF 标志,并且在缺省情况下把关闭 KDB。我们把在后面一节中对此进行详细介绍。

保存配置,然后退出。重新编译内核。建议在构建内核之前执行“make clean”。用常用方式安装内核并引导它。

初始化并设置环境变量

您可以定义把在 KDB 初始化期间执行的 KDB 命令。需要在纯文本文件 kdb_cmds 中定义这些命令,该文件位于 Linux 源代码树(当然是在打了补丁之后)的 KDB 目录中。该文件还可以用来定义设置显示和打印选项的环境变量。文件开头的注释提供了编辑文件方面的帮助。使用这个文件的缺点是,在您更改了文件之后需要重新构建并重新安装内核。

激活 KDB

如果编译期间没有选中 CONFIG_KDB_OFF,那么在缺省情况下 KDB 是活动的。否则,您需要显式地激活它 - 通过在引导期间把 kdb=on 标志传递给内核或者通过在挂装了 /proc 之后执行该工作:

#echo "1" >/proc/sys/kernel/kdb

倒过来执行上述步骤则会取消激活 KDB。也就是说,如果缺省情况下 KDB 是打开的,那么把 kdb=off 标志传递给内核或者执行下面这个操作把会取消激活 KDB:

#echo "0" >/proc/sys/kernel/kdb

我们可以看到 rmqueue() 被 __alloc_pages 调用,后者接下来又被 _alloc_pages 调用,以此类推。

每一帧的第一个双字(double word)指向下一帧,这后面紧跟着调用函数的地址。因此,跟踪堆栈就变成一件轻松的工作了。

go 命令可以有选择地以一个地址作为参数。如果您想在某个特定地址处继续执行,则可以提供该地址作为参数。另一个办法是使用 rm 命令修改指令指针寄存器,然后只要输入 go。如果您想跳过似乎会引起问题的某个特定指令或一组指令,这就会很有用。但是,请注意,该指令使用不慎会造成严重的问题,系统可能会严重崩溃。

您可以利用一个名为 defcmd 的有用命令来定义自己的命令集。例如,每当遇到断点时,您可能希望能同时检查某个特殊变量、检查某些寄存器的内容并转储堆栈。通常,您必须要输入一系列命令,以便能同时执行所有这些工作。defcmd 允许您定义自己的命令,该命令可以包含一个或多个预定义的 KDB 命令。然后只需要用一个命令就可以完成所有这三项工作。其语法如下:

[code:1:6ddc15f4ad][0]kdb> defcmd name "usage" "help"

[0]kdb> [defcmd] type the commands here

[0]kdb> [defcmd] endefcmd [/code:1:6ddc15f4ad]

例如,可以定义一个(简单的)新命令 hari,它显示从地址 0xc000000 开始的一行内存、显示寄存器的内容并转储堆栈:

[code:1:6ddc15f4ad][0]kdb> defcmd hari "" "no arguments needed"

[0]kdb> [defcmd] md 0xc000000 1

[0]kdb> [defcmd] rd

[0]kdb> [defcmd] md %ebp 1

[0]kdb> [defcmd] endefcmd [/code:1:6ddc15f4ad]

该命令的输出会是:

[code:1:6ddc15f4ad][0]kdb> hari

[hari]kdb> md 0xc000000 1

0xc000000 00000001 f000e816 f000e2c3 f000e816

[hari]kdb> rd

eax = 0x00000000 ebx = 0xc0105330 ecx = 0xc0466000 edx = 0xc0466000

....

...

[hari]kdb> md %ebp 1

0xc0467fbc c0467fd0 c01053d2 00000002 000a0200

[0]kdb> [/code:1:6ddc15f4ad]

[1] [2] [3] 下一页  

相关内容
赞助商链接